Research group

Agent Systems and Reinforcement Learning

Reward shaping in reinforcement learning

5 March 2019

Reinforcement learning tasks often formulate around some type of reward function. This function defines how effectively our algorithms will train and what would be the optimal policy.

At the seminar, we will discuss some examples of how you can modify the reward function to improve algorithms' convergence. We will also discuss various potential functions and how to use them.

Speaker: Oleg Svidchenko.

Presentation language: Russian.

Date and Time: March 5th, 18:30-20:00.

Place: Times, room 204.

Videos from previous seminars are available at http://bit.ly/MLJBSeminars

Resources